

Telemetry System

Type Single

Type Double

A simple, accurate method of conditioning and transmitting strain, thermocouple, voltage, or ICP ${ }^{\circledR}$ signals from moving or rotating components.

Type Single / Type Double

Contents
page
Important Safety Tips 3
Important Installation Tips 4
Technical Data 5
Basic system constellation 6
Rotor Electronics S-RE1 8
Rotor Electronics S-RE1P 10
Rotor Electronics S-RE2 11
Rotor Electronics S-RE3 13
Rotor Electronics D-RE1 14
Powering the S-RE 16
Powering the D-RE 18
Inductive / receiving Heads SD-SH 19
Telemetry Cable Cab-x 26
Control Unit S-CU 27
Control Unit D-CU 32
CAN Interface SD-CAN 36
Shunt Calibration 38
Installation of Transfer Winding 39
Installation Kit SD-IK1 41
Installation of 2 Single on 1 Shaft 42
CE Approved 44

(! Tip

The first letter(s) of the short name of every component shows the usability to the systems Single or Double:
S- = Single only D- = Double only SD- = Single and Double

Abbreviations

TC	Thermocouple	STG	Strain Gage	\mathbf{n}	RPM
$\mathbf{M t}$	Torque	AC	Alternating Current	DC	Direct Current

Units of physical dimensions

Voltage	$1 \mathrm{~V}=1,000 \mathrm{mV}$	Current	$1 \mathrm{~A}=1,000 \mathrm{~mA}$
Acceleration	$1 \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$	Torque	$1 \mathrm{Nm}=8.851 \mathrm{in} . \mathrm{lbf}$
Weight	$1 \mathrm{~kg}=1,000 \mathrm{~g}=35.275$ oz	Length	$1 \mathrm{~m}=1,000 \mathrm{~mm}=3.28 \mathrm{ft}=39.37{ }^{\prime}{ }^{\prime}$
Temperature	${ }^{\circ} \mathrm{C}=$ degrees Celsius; ${ }^{\circ} \mathrm{F}=$ degrees Fahrenheit; $\mathrm{K}=$ degrees Kelvin		

In the interest of constant product improvement, we reserve the right to change specifications without notice.

Type Single / Type Double

\triangle

Important Safety Tips!

The Telemetry system utilizes an inductive electricity supply.
Avoid having combustible material in the area of the inductive head.
The power oscillator is regulated according to power usage.
With high power demand the inductive head can become hot to the touch, up to $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$.
With high power use the Control Unit can become warm to the touch and should be located in a well ventilated area.

Potential health hazard for heart pacemakers.

The inductive supply system generates a magnetic field.
Heart pacemakers and other sensitive medical devices should stay clear of the active magnetic field. This area is $50 \mathrm{~cm} / 20$ " around the inductive head.

Potential Burn Hazard.

Avoid metallic objects in and around the active magnetic field. Such as rings, chains and other metallic jewelry. These objects can become very hot and burn the skin.

Electrical Shock Hazard.

The Control Unit should not be opened except by authorized service personnel. High voltages of up to $400 V_{p p}$ can be found in the Control Unit and stator head cable. Any damaged or frayed stator cables should be discarded and replaced immediately as they may pose a shock hazard.

It is the responsibility of the user to ensure the rotor electronics and antenna are properly installed on the shaft.
Components not correctly mounted may come loose during operation and cause injury to personnel and damage to the components and property.

Type Single / Type Double

Important Installation Tips!

Installation

All cable connections should be done with the power off.
Only apply power to the Control Unit with a stator head connected, otherwise damage to the Control Unit may occur.

If the inductive head is placed on a metallic surface with the power on, the power oscillator will produce maximum power. While there is circuitry to prevent the system from being damaged for a short period of time, this must be avoided.

The inductive head should be fastened to a non-metallic plate or bracket.
If a metallic bracket is used the stator should be isolated from the metal by more than 5 mm of a non metallic material such as rubber or plastic.

Mounting the stator near or on metal could produce unnecessary warming of the stator head and cause damage to the system. Every attempt should be made to keep a metal free area around the stator head for best operation.

The installation of the Telemetry system requires the rotor electronics and antenna be mounted in such a way they do not come loose during operation.

It is the responsibility of the user to ensure the components of the Telemetry system are properly installed.

Knowledge of basic soldering techniques is required.
Soldering should be performed using a small regulated soldering iron. The recommended temperature setting is $400^{\circ} \mathrm{C} / 752^{\circ} \mathrm{F}$.

Type Single / Type Double

Technical Data

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Rotor electronics S-RE / D-RE} \\
\hline \multicolumn{2}{|l|}{Mechanical values} \\
\hline housing \& nickel-plated aluminium housing dust tight and waterproof installable \\
\hline Mechanical adaptation \& installation on shafts with tapes, glue and resins or screws \\
\hline weight; dimensions \& \begin{tabular}{lll}
S-RE1 \& \(3 \mathrm{~g} / 0.1 \mathrm{oz} . ;\) \& \(40 \mathrm{~mm} \times 12 \mathrm{~mm} \times 3,5 \mathrm{~mm} / 1.57^{\prime \prime} \times 0.47^{\prime \prime} \times 0.14^{\prime \prime}\) \\
S-RE1P \& \(15 \mathrm{~g} / 0.5 \mathrm{oz} . ;\) \& \(41 \mathrm{~mm} \times 29 \mathrm{~mm} \times 9 \mathrm{~mm} / 1.61^{\prime \prime} \times 1.14^{\prime \prime} \times 0.35^{\prime \prime}\) \\
S-RE3 \& \(3.5 \mathrm{~g} / 0.11 \mathrm{oz} . ;\) \& \(40 \mathrm{~mm} \times 14 \mathrm{~mm} \times 3,5 \mathrm{~mm} / 1.57^{\prime \prime} \times 0.55^{\prime \prime} \times 0.14^{\prime \prime}\) \\
D-RE1 \& \(5 \mathrm{~g} / 0.17 \mathrm{oz} . ;\) \& \(45 \mathrm{~mm} \times 18 \mathrm{~mm} \times 3,5 \mathrm{~mm} / 1.77^{\prime \prime} \times 0.71^{\prime \prime} \times 0.14^{\prime \prime}\)
\end{tabular} \\
\hline Maximum RPM \& dependent on installation, up to 50,000 RPM; higher on request \\
\hline Operating temperature \& \(-40^{\circ} \mathrm{C} \ldots 120^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F} . . .248^{\circ} \mathrm{F}\), not condensing \\
\hline Power supply \& Battery 6...18V; Inductive supply with module SD-IP \\
\hline Sensor connection \& Solder pads (REx) or Solder pins (RE1P) \\
\hline Data transmission \& integrated RF-transmitter; 10.7 MHz; < 1 mW \\
\hline Transmitting antenna \& Dependent-on application, single band / wire around shaft \\
\hline Signal input \& differential amplifier for direct connection of sensors \\
\hline - Configuration \& by solder jumpers or resistor \\
\hline Sensors \& \begin{tabular}{l}
S-RE1 \(/\) RE1P \\
S-RE2
\end{tabular}\(\quad\)\begin{tabular}{l}
Strain gage full-bridge / half-bridge \(>=350\) Ohm; \\
TC Type \(K\) (also non-isolated) ; ; (S-RE3 ICP)
\end{tabular}
D-RE1 \(\quad\) two Strain gages full-bridge / half-bridge >=350 Ohm; \\
\hline Strain gage bridge excitation \& 3VDC, integrated, short circuit protected \\
\hline Measurement ranges S-RE1/D-RE1 \& \(\pm 0.5 \mathrm{mV} / \mathrm{V}, \pm 2 \mathrm{mV} / \mathrm{V}\), set by jumper or \(\pm 0.1 \mathrm{mV} / \mathrm{V} . . \pm 16 \mathrm{mV} / \mathrm{V}\) adjustable \\
\hline S-RE2 \& \(-100^{\circ} \mathrm{C}\).. \(1,000^{\circ} \mathrm{C} /-148^{\circ} \mathrm{F} . .1,832^{\circ} \mathrm{F}\), linearized, cold junction compensated \\
\hline S-RE3 \& \(\pm 1 \mathrm{~V}, \pm 5 \mathrm{~V}\), set by jumper or \(\pm 100 \mathrm{mV} \ldots \pm 5 \mathrm{~V}\) adjustable \\
\hline S-RE1P \& \(\pm 0.1 \mathrm{mV} / \mathrm{V} \ldots \pm 16 \mathrm{mV} / \mathrm{V}\) adjustable \\
\hline Accuracy without sensor \& better \(\pm 0.1 \%\) FS or \(\pm 1^{\circ} \mathrm{K}\) \\
\hline Signal bandwidth/ Antialiasing filter \& 1 kHz / Butterworth \\
\hline Linearity \& < 0.1\% \\
\hline \multirow[t]{2}{*}{Zero drift and Gain drift} \& \(-10^{\circ} \mathrm{C} . . .80^{\circ} \mathrm{C} / 14{ }^{\circ} \mathrm{F} . . .176^{\circ} \mathrm{F}<0.001 \% / \mathrm{K} ; \quad . .100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}<0.002 \% / \mathrm{K}\) \\
\hline \& \(-40^{\circ} \ldots 120^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F} . . .248^{\circ} \mathrm{F}<0.003 \% / \mathrm{K}\) \\
\hline Adjustment function \& Offset \(\pm 1.8 \mathrm{~V}\) and gain \(\pm 20 \%\) by potentiometer at control unit \\
\hline \multirow[t]{2}{*}{Control function} \& Shunt calibration for STG-application ; power on and switch \\
\hline \& negative full scale if TC break \\
\hline \multicolumn{2}{|l|}{Stator SD-SH} \\
\hline Wideband Induktive/Receiving head

SD-SH

SD-SH

SD-SH
SD-SH \& Transmission distance dependent on installation, typically: $40 \mathrm{~mm} / 1.6^{\prime \prime}$; dimensions $35 \times 50 \times 70 \mathrm{~mm}^{3}$ $10 \mathrm{~mm} / 0.4^{\prime \prime}$; dimensions $25 \times 30 \times 45 \mathrm{~mm}^{3}$ $500 \mathrm{~mm} / 19.7$ " loop length; longer length are available $60 \mathrm{~mm} / 2.4$ "; dimensions $35 \times 100 \times 70 \mathrm{~mm}^{3}$

\hline Wideband Receiving head SD-SH3 \& $0.1 \mathrm{~m} . . .0 .5 \mathrm{~m} / 0.3 \mathrm{ft} .1 .5 \mathrm{ft}$. dependent on installation and antenna design, dimensions $24 \times 12 \times 5.5 \mathrm{~mm}^{3} ; 0.95{ }^{\prime \prime} \times 0.47{ }^{\prime \prime} \times 0.22^{\prime \prime}$

\hline \multicolumn{2}{|l|}{Telemetry cable Cab}

\hline Connection cable for SD-SH1/-SH2/-SH4/-SH5 \& 5m/16ft - Cab-IP-5; 10m/32ft - Cab-IP-10; 20m/64ft - Cab-IP-20

\hline Connection cable for SD-SH3 \& 5m/16ft - Cab-RF-5; 10m/32ft - Cab-RF-10; 20m/64ft - Cab-RF-20

\hline \multicolumn{2}{|l|}{Control unit S-CU / D-CU}

\hline | Signal output | -analog voltage |
| :--- | :--- |
| | -analog frequency |
| | -analog current | \& | $\pm 10 \mathrm{~V} ;$ | BNC jack on front (S-CU0, S-CUR, D-CUO); |
| :--- | :--- |
| $10 \mathrm{kHz} \pm 5 \mathrm{kHz} ;$ | Screw clamps (S-CUH) |
| $4 \ldots 2$ BN jack on front (S-CU0, S-CUR) | |
| $4 \ldots \mathrm{~mA} ;$ | screw clamps (S-CUH) |

\hline Display \& 3½ digit LCD-Display (S-CU0, S-CUR, D-CU0)

\hline Power supply \& 9... 32VDC, with inductive power supply about 12W

\hline | Dimensionss (LxHxW); Weight | S-CUO/D-CU0
 S-CUR
 S-CUH |
| ---: | :--- | \& Compact housing $180 \times 105 \times 64 \mathrm{~mm}^{3} / 7.09$ " $\times 4.13^{\prime \prime} \times 2.54$ "; $1 \mathrm{~kg} / 350 \mathrm{z}$. Rack housing 19 " plug-in / 3RU x 14HP; (3HE x 14TE); $1 \mathrm{~kg} / 350 \mathrm{z}$. DIN Rail housing; $164 \mathrm{~mm} \times 105 \mathrm{~mm} \times(89 \mathrm{~mm}) ; 1 \mathrm{~kg} / 35 \mathrm{oz}$.

\hline Operating temperature \& $0^{\circ} \mathrm{C} \ldots . .60^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} . . .140^{\circ} \mathrm{F}$

\hline Installation Kit SD-IK1 \& Installation length of 1m; copper band, Mu-metall, Isolation tape

\hline Specials S-f-xMHz \& Carrier frequencies other than 10.7 MHz , are available

\hline
\end{tabular}

Type Single

Basically system constellation
$\begin{array}{ll}\text { Rotor- } & \text { Power- } \\ \text { electronics } & \text { module }\end{array}$

Inductive-
head

Cable
Control unit

Installation material

Example: torque measurement on a rotating shaft with strain gage, full bridge

Type Double

Basically system constellation

Rotor-	Powermodule	Inductive	Cable	Contro	Installation

Type Single

Rotor electronics S-RE1
Rotorelectronics for Strain Gage Full or Halfbridge, $\geq 350 \Omega$

RF-Gnd
contact to shaft recomended.

or
IP-module for
Inductive power

SD-IP Inductive power modul

.

Fixed Sensitivity
G1 $=0.5 \mathrm{mV} / \mathrm{V}$ G2 $=2 \mathrm{mV} / \mathrm{V}$
install solder jumper!

Gain Resistor
GA
 install solder jumper!
IN- not used
CAL
Calibration Resistor

Calculation of the resistors to be soldered
Gain Resistor

Calibration Resistor

$$
G A=\frac{100}{\frac{125}{3 \times S}-1} \quad[k \Omega]
$$

$$
C A L=R b \times\left(\frac{25000}{D \times S}-0,5\right)[k \Omega]
$$

Units $\mathrm{S}=$ Sensitivity [mV/V]; Rb = Bridge resistor [$\mathrm{k} \Omega$]; $\mathrm{D}=\operatorname{detuning~[~\% ~]~}$

Sensitivity	$[\mathrm{mV} / \mathrm{V}]$	0.1	0.5	1.0	2.0	4.0	8.0
GA	$[\mathrm{k} \Omega]$	0.241	1.215	2.459	5.042	10.619	23.762
CAL $[\mathrm{k} \Omega]$ $1,093.575$ 218.575 109.200 80% detuning $/ 350 \Omega$ bridge	54.512	27.169	13.497				

Type Single

Rotor electronics S-RE1 Overview

Rotor electronics S-RE1 Input connection

Full bridge

example $0.5 \mathrm{mV} / \mathrm{V}$

Half bridge

example $2 \mathrm{mV} / \mathrm{V}$

Type Single

Rotor electronics S-RE1P version solder pins
Rotorelectronics for Strain gage Full or Halfbridge, $\geq 350 \Omega$

Calculation of the resistors to be soldered

Gain Resistor

Calibration Resistor

$$
G A=\frac{100}{\frac{125}{3 \times S}-1}[\mathrm{k} \Omega]
$$

$$
C A L=R b \times\left(\frac{25000}{D \times S}-0,5\right)[k \Omega]
$$

Units $S=$ Sensitivity [mV/V]; Rb = Bridge resistor [$k \Omega$]; $\quad \mathrm{D}=$ detuning [\%]

Sensitivity	$[\mathrm{mV} / \mathrm{V}]$	0.1	0.5	1.0	2.0	4.0	8.0
GA	$[\mathrm{k} \Omega]$	0.241	1.215	2.459	5.042	10.619	23.762
CAL 80%	$[\mathrm{k} \Omega]$	$1,093.575$	218.575	109.200	54.512	27.169	13.497

Type Single

Rotor electronics S-RE2
Rotorelectronics for Thermocouple type K; NiCr-Ni

RF-Gnd
contact to shaft recommended.

Color code of Thermocouples

SD-IP Inductive power modul

Important hints

1. The rotorelectronics is used together with the Control unit S-CU.

The factory-sided adjustment corresponds to data sheet.

$$
10 \mathrm{~V}==>1,000^{\circ} \mathrm{C} ; 0 \mathrm{~V}==>0^{\circ} \mathrm{C} ;-10 \mathrm{~V}==>\left(-1,000^{\circ} \mathrm{C}\right) \text {, used range }-1 \mathrm{~V}==>-100^{\circ} \mathrm{C}
$$

2. The possibilities of offset adjustment and gain adjustment should not be used at the S-CU.
3. The Shunt Calibration is not used with TC application.

If the Cal switch is pressed the output goes to 0 V (for about 8 seconds) and then the cold junction temperature ($==$ rotor electronics temperature) is shown for about 3 seconds.
4. After system powered on the cold junction temperature is shown for about 3 seconds.
5. Sometimes TC are hardly solderable. It makes sense the connection wires to assemble with crimp barrels .

Type Single

Rotor electronics S-RE2
Overview

Rotor electronics S-RE2 Input connection

Thermocouple type K; NiCr-Ni

Type Single

Rotor electronics S-RE3
Rotorelectronics for ICP ${ }^{\circledR}$ acceleration sensors

RF-Gnd
contact to shaft recomended.

or
IP-module for
Inductive power

Gain Resistor
GA

SD-IP Inductive power modul

Possibilities installation of GA Resistor

Calculation of Gain Resistor GA to be soldered

$$
\begin{aligned}
U & =S \times R \\
G A & =\frac{100}{\frac{U}{250}-1} \quad[\mathrm{k} \Omega]
\end{aligned}
$$

Units

S = Sensitivity sensor [mV/g]
R = Acceleration Measurement Range [g]
$\mathrm{U}=$ Input Voltage [mV]

Input Voltage	$[\mathrm{mV}]$	500	1000	2000	3000	4000	5000
GA	$[\mathrm{k} \Omega]$	100	33.333	14.286	9.091	6.667	5.263

Example: $S=100 \mathrm{mV} / \mathrm{g} ; \mathrm{R}=\mathbf{2 0 g}$

$$
U=100 \mathrm{mV} / \mathrm{g} \times 20 \mathrm{~g}=2000 \mathrm{mV}=\Rightarrow \quad \mathrm{GA}=100 /((2000 / 250)-1) \mathrm{k} \Omega=\underline{14.286 \mathrm{k} \Omega}
$$

Type Double

Rotor electronics D-RE1

Rotorelectronics for use with 2 Strain gages Full or Halfbridge, $\geq 350 \Omega$
Channel1 and Channel2 are built up symmetrically.
The configuration corresponds to the Type Single

Dimensiones: $45 \mathrm{~mm} \times 18 \mathrm{~mm} \times 3,5 \mathrm{~mm}$; weigth about $5 \mathrm{~g}, \quad\left(1.77^{\prime \prime} \times 0.71^{\prime \prime} \times 0.14\right.$ ")

Calculation of the resistors to be soldered
Gain Resistor

Calibration Resistor

$$
G A=\frac{100}{\frac{125}{3 \times S}-1}[k \Omega]
$$

$$
C A L=R b \times\left(\frac{25000}{D \times S}-0,5\right)[k \Omega]
$$

Units $\mathrm{S}=$ Sensitivity [mV / V]; $\mathrm{Rb}=$ Bridge resistor [$\mathrm{k} \Omega$]; $\mathrm{D}=$ detuning [\%]

Sensitivity	$[\mathrm{mV} / \mathrm{V}]$	0.1	0.5	1.0	2.0	4.0	8.0
GA	$[\mathrm{k} \Omega]$	0.241	1.215	2.459	5.042	10.619	23.762
CAL 80%	$[\mathrm{k} \Omega]$						

Type Double

Rotor electronics D-RE1
Overview

Rotor electronics D-RE1 Input connection

Example:

Channel 1

Full bridge,
Sensitivity jumpered to $0.5 \mathrm{mV} / \mathrm{V}$

Channel 2

Half bridge,
Sensitivity jumpered to $2 \mathrm{mV} / \mathrm{V}$

Type Single

Powering the Rotor electronics S-RE1 / S-RE2
DC Supply

AC Supply

Type Single

Powering the Rotor electronics S-RE1P
DC Supply
Electrical contact

AC Supply

Type Double

Powering the Rotor electronics D-RE1

DC Supply

AC Supply

Copper band

Type Single / Type Double

Inductive / receiving heads SD-SH

Version with Lemo-connector and extension cable.
(1) SD-SH1 /-SH2 /-SH4 /-SH5 have an integrated active antenna.

Frequency range: wideband range 10 MHz to 40 MHz .
SD-SH3 too, but is designed for use with battery power only.

Type Single / Type Double

Inductive head SD-SH1

typical air gap 40 mm / 1.58"

The inductive head should be fastened to a non-metallic plate or bracket. If a metallic bracket is used the stator should be isolated from the metal by more than 5 mm of a non metallic material such as rubber or plastic.

Mounting the stator near or on metal could produce unnecessary warming of the stator head and cause damage to the system. Every attempt should be made to keep a metal free area around the stator head for best operation.

drawing dimensiones in mm

Type Single / Type Double

Inductive head SD-SH2
 "Small Head"

Typical air gap 10 mm / 0.4"

The inductive head should be fastened to a non-metallic plate or bracket. If a metallic bracket is used the stator should be isolated from the metal by more than 5 mm of a non metallic material such as rubber or plastic.

Mounting the stator near or on metal could produce unnecessary warming of the stator head and cause damage to the system. Every attempt should be made to keep a metal free area around the stator head for best operation.

Pinout

Pin3 Power1
Pin4 Power2
Drawing dimensiones in mm

Type Single / Type Double

Inductive head SD-SH4 „Loop Head"

typical loop length

350mm...650mm / 13.8"...25.6"

Loop material:

standard and recommended: Copper band $0.3 \mathrm{~mm} \times 10 \mathrm{~mm} ; 1 / 82^{\prime \prime} \times 0.39$ " Included Loop length: $500 \mathrm{~mm} / 19.7^{\text {"; }}$ Loop length up to 4 m is possible
Screws:
Allen-head screw; M5 x 10mm
The screws should be torqued to $2.5 \mathrm{Nm} / 22 \mathrm{in}$.lbf

It is very important the contact area of the loop and screws be clean during assembly and should be cleaned with sandpaper.
To improve the connection a

Pinout
Pin1 RF wire
Pin2 RF shield
Pin3 Power1
Pin4 Power2

Type Single / Type Double

Receiving head SD-SH3

typical receiving distance $200 \mathrm{~mm} / 0.64 \mathrm{ft}$

The receiving head is designed for use with batterie powered installation. It is not possible to inductively power the rotor electronics with the Head SH3.

While plug in the original connecting cable into the Control unit the power oscillator is not switched on.

Cable connector
Type Binder series 680, 6 pin

Mount with M3 screw, with glue or double-sided adhesive tape depending on application and surface.

680-09-0321-00-06
Pinout
Pin1 RF wire
Pin2 RF shield
Pin3 n.c.
Pin4 n.c.
Pin5 n.c. !
Pin6 n.c. !

Type Single / Type Double

The inductive head should be fastened to a non-metallic plate or bracket. If a metallic bracket is used the stator should be isolated from the metal by more than 5 mm of a non metallic material such as rubber or plastic.

Mounting the stator near or on metal could produce unnecessary warming of the stator head and cause damage to the system. Every attempt should be made to keep a metal free area around the stator head for best operation.

Maximum screw depth 7mm/0.275"
Maximum torque 1.6 Nm / 14in.lbf

Pinout

Pin1 RF wire
Pin2 RF shield
Pin3 Power1
Pin4 Power2
active area

Lemo-Triaxial cable Part-No. 017820 $0.3 \mathrm{~m} / 1 \mathrm{ft}$

Type Single / Type Double

Inductive / receiving heads SD-SHx-3
The Inductive / receiving heads SD-SH1 /-SH2 /-SH4 /-SH5 and receiving head SD-SH3 but with permanently installed 3 m cable, no Lemo-connector.
The technical data and the dimensions are identical to the corresponding type:
SD-SH1 ==> SD-SH1-3
SD-SH2 ==> SD-SH2-3
SD-SH4 ==> SD-SH4-3
SD-SH5 ==> SD-SH5-3
SD-SH3 ==> SD-SH3-3
(. Using a fixed cable type, another Cab-IP-x or Cab-RF-x cable is not required.

without picture but sensibly

Type Single / Type Double

Telemetry cable Cab-IP
Cab-IP is used with the heads: SD-SH1 / SD-SH2 / SD-SH4 / SD-SH5
available lengths:

Pinout

Pin1 RF wire
Pin2 RF sheeld
Pin3 Power1
Pin4 Power2

FFA.0E.304.CLAC50

Cable connector

Type LEMO series 0E, 4pin

Length $5 \mathrm{~m} / 16 \mathrm{ft}$ part Cab-IP-5
Length $10 \mathrm{~m} / 32 \mathrm{ft}$ part Cab-IP-10
$\begin{array}{ll}\text { Length } 10 \mathrm{~m} / 32 \mathrm{ft} & \text { part Cab-IP-10 } \\ \text { Length } 20 \mathrm{~m} / 64 \mathrm{ft} & \text { part Cab-IP-20 }\end{array}$

Cable connector

Type Binder series 680, 6pin
680-09-0321-00-06

Lemo-Triaxial cable
Part-No. 017820

Pinout
Pin1 RF wire
Pin2 RF shield
Pin3 Power1
Pin4 Power2
Pin5-Jumpered to turn
Pin6 power oscillator on

(6)The cable is resistant to most oils, lubricants, water, and acids.
The bending radius of the cable should not be less than $25 \mathrm{~mm} / 1^{\prime \prime}$.
Operating temperature range:- $40^{\circ} \mathrm{F}$ to $248^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$
Caution!
Voltage up to $400 \mathrm{~V}_{\mathrm{pp}}$, 22.5 kHz is on the cable. Only use the approved original cable. Damaged or frayed cables must be discarded and replaced immediately.

Telemetry cable Cab-RF

Cab-RF is used with the head: SD-SH3

available lengths:

Cable connector

Type Suhner RF
SMA RG174

Length 5m / 16ft part Cab-RF-5
Length $10 \mathrm{~m} / 32 \mathrm{ft}$ part Cab-RF-10
Length $20 \mathrm{~m} / 64 \mathrm{ft}$ part Cab-RF-20

Cable connector

Type Binder series 680, 6pin 680-09-0321-00-06

Type Single

Control unit S-CUO

(5) Calibration Switch
(2)

RF-Level LED
(3) Offset Switch - Adjustable (LED on)

Potentiometer active

- Default Setting
(4) Frequency Out
(9) ON/OFF Switch

Pin 5 and Pin 6 are shorted in cable connector

Type Single

Control unit S-CUR
3RU / 14HP (129mm x 71mm)
(1) LCD Monitor

(5) Calibration Switch
(6) Gain Switch

- Adjustable (LED on) Potentiometer active
(3) Offset Switch
- Adjustable (LED on)

Potentiometer active

- Default Setting
(4) Frequency Out
\qquad
- Default Setting
(7) Filter Switch Frequency $1,000 \mathrm{~Hz} / 100 \mathrm{~Hz}$
(8) Voltage Out

Pin 5 and Pin 6 are shorted in cable connector

Type Single

Control unit S-CUO / S-CUR

Type Single

Control unit S-CUH DIN Rail

Type Single

Control unit S-CUH

No.	Name	Short description
1	Head connector	Connection for Head SD-SHx with the telemetry cable Cab-IP or Cab-RF
2	RF-Level LED	Lit green LED indicates a good RF level. Data link is good. link is working.
3	Offset switch	Iower position = factory calibration, LED off upper position $=$ adjustable, yellow LED on Range $\pm 1.8 \mathrm{~V}$ of $\pm 10 \mathrm{~V}$ by potentiometer
4	Calibration switch	Initiates a shunt calibration which unbalances the bridge by x \% (determined by the user installed shunt resistor)
5	Gain switch	lower position = factory calibration, LED off upper position = user adjustable, yellow LED on Range $\pm 20 \%$ by potentiometer
6	Filter switch	switches the output filter (4 pole Butterworth) to a 3dB-frequency of 100 Hz or 1 kHz
7	Ind. Power switch	Position 0 inductive power off; battery power mode Position 1 regular working conditions for all Heads SHx Position 2 raised power if this is required
8	Terminal 1 Outputs	Clamp 1 ==> Voltage Output + 10V , single ended Clamp 2 ==> Voltage Output Gnd Clamp 3 ==> Current Output 4 ...20mA Clamp 4 ==> Current Output Gnd
9	Terminal 2 Inputs	Short term bridge starts Calibration Cycle Clamp $1==>$ Clamp $2==>$ Clamp $3=$ => + Power supply 9...32VDC Clamp $4==>$ Gnd Power supply Clamp $5==>$ Ground Housing Clamp $6==>$ Ground Housing

Type Double

Control unit D-CUO
(1) LCD Monitor

(2) RF-Level LED
(3) Offset Switch

- Adjustable (LED on)

Potentiometer active

- Default Setting
(4) Voltage Out Channel1
 $\frac{2}{(8)}$
(5) Calibration Switch
(6) Gain Switch
- Adjustable (LED on)

Potentiometer active

- Default Setting
(7) Filter Switch

Frequency
$1,000 \mathrm{~Hz} / 100 \mathrm{~Hz}$
(8) Voltage Out

Channel2

Type Double

Control unit D-CUO

Type Double

Control unit D-CUH DIN Rail

Pin 2 RF Gnd
Pin 4 Power 2
Pin 6 Osz. ON2
(are shorted in cable connector)
Pin 1 RF wire
Pin 3 Power 1
Pin 5 Osz. ON1 in 6 Osz. ON2
(7) Inductive Power switch

(2)

(4) Calibration Switch
(5) Gain Switch LED and Potentiometer

Voltage Supply 9...32V

(3) Offset Switch
LED and
Potentiometer
(8) Terminal 1
Outputs
(9) Terminal 2
Intputs
(6) Filter Switch
Frequency
$\mathbf{1 , 0 0 0 H z} / 100 \mathrm{~Hz}$

Type Double

Control unit D-CUH

No.	Name	Short description
1	Head connector	Connection for Head SD-SHx with the telemetry cable Cab-IP or Cab-RF
2	RF-Level LED	Lit green LED indicates a good RF level. Data link is good. link is working.
3	Offset switch	lower position = factory calibration, LED off upper position = adjustable, yellow LED on Range $\pm 1.8 \mathrm{~V}$ of $\pm 10 \mathrm{~V}$ by potentiometer
4	Calibration switch	Initiates a shunt calibration which unbalances the bridge by x \% (determined by the user installed shunt resistor)
5	Gain switch	lower position = factory calibration, LED off upper position = user adjustable, yellow LED on Range $\pm \mathbf{2 0 \%}$ by potentiometer
6	Filter switch	switches the output filter (4 pole Butterworth) to a 3dB-frequency of 100 Hz or 1 kHz
7	Ind. Power switch	Position 0 inductive power off; battery power mode Position 1 regular working conditions for all Heads SHx Position 2 raised power if this is required
8	Terminal 1 Outputs	Clamp 1 ==> Voltage Output Channel 1 , single ended Clamp 2 ==> Voltage Output Gnd Clamp 3 ==> Voltage Output Channel 2 , single ended Clamp 4 ==> Current Output Gnd
9	Terminal 2 Inputs	Short term bridge starts Calibration Cycle Clamp $1==>$ Clamp $2==>$ Clamp $3==>+$ Power supply 9...32VDC Clamp $4==>$ Gnd Power supply Clamp $5==>$ Ground Housing Clamp $6==>$ Ground Housing

Type Single / Type Double

CAN Interface SD-CAN (optional for S-CU0 and D-CUO) 36

(2) Power supply

Pin 1 + supply
Pin 3 - supply/ Gnd
(3) Head connector

Pin 1 RF wire Pin 2 RF Gnd
Pin 3 Power 1 Pin 4 Power 2
Pin 5 Osz. ON1 Pin 6 Osz. ON2
Pin 5 and Pin 6 are shorted in cable connector
(4) Inductive Power switch

Position 0 Battery Operation
Position 1 Regular Power
Position 2 High Power
(5) CAN Identifier

Selectable range: 200h ... 2FFh 512 ... 767 decimal (other ranges possible)
(7) CAN Bitrate and Analog Signal Frequency

Position 0 500kbit/s
Position 1 500kbit/s
Position 2 1Mbit/s
Position 3 1Mbit/s
100Hz Signal frequency
1 kHz Signal frequency
100Hz Signal frequency
1kHz Signal frequency

Type Single / Type Double

CAN Interface SD-CAN

No.	Name	Short description
1	ON/OFF switch	Rocker switch turns on and off the DC supply voltage to the system.
2	Power supply connector	DC power input to power Control Unit
3	Head connector	Connection for Head SD-SHx with the telemetry cable Cab-IP or Cab-RF
4	Ind. Power switch	Position 0 inductive power off; battery power mode Position 1 regular working conditions for all Heads SHx Position 2 raised power if this is required
5	CAN Identifier	Selectable range 200h...2FFh (hexadecimal) equates to $512 . . .767$ (decimal)
6	CAN connector	SubD-9pin connector Pin 2 = CAN low Pin $7=$ CAN high Bus resistor has to be inserted externally
7	CAN Speed	CAN Bitrate and Analog Signal Frequency

The CAN interface occupies one CAN-ID with 4 channels:
CAN channel1 ==> Single channel or channel1 of a Double system
CAN channel2 ==> channel2 of a Double system
CAN channel3 ==> Single channel or channel1 of a Double system
CAN channel4 ==> channel2 of a Double system
Each channel is mapped twice on an identifier. The low channel is always the first sample and the next channel is the following, equidistant sample.

Examples of dbc-files for a Double system and a Single system
BO_ 512 Message1_1: 8 RTM
SG_DOUBLE_1_1 : 0|16@1+ (0.0610351563,-2000.0000) [-2000.0000|2000.0000] "Nm" RTM
SG_DOUBLE_2_1: 16|16@1+ (0.0030517578,-100.0000) [-100.0000|100.0000] "\%" RTM
SG_DOUBLE_1_2 : 32|16@1+ (0.0610351563,-2000.0000) [-2000.0000|2000.0000] "Nm" RTM
SG_DOUBLE_2_2 : 48|16@1+ (0.0030517578,-100.0000) [-100.0000|100.0000] "\%" RTM
BO_ 529 Message1_1: 8 RTM
SG_SINGLE_1_1:-0|16@1+ (0.0305175781,-1000.0000) [-1000.0000|1000.0000] "Nm" RTM
SG_SINGLE_X_1 : 16|16@1+ $(0,0)$ [0|0] "" RTM
SG_SINGLE_1_2 : 32|16@1+ (0.0305175781,-1000.0000) [-1000.0000|1000.0000] "Nm" RTM
SG_SINGLE_X_2 : 48|16@1+ $(0,0)$ [0|0] "" RTM

Type Single / Type Double

Shunt Calibration

The Shunt-Calibration is an accepted method to check the system functionality.
A resistor is placed in parallel to leg R in the picture below to unbalance the bridge to a predefined value. This predefined value is determined by the value of resistor CAL.
To calculate the resistor CAL value please see chapter "Rotor Electronics S-RE respectively D-RE."
Shown is example with S-RE, but D-RE is the same two times.

Calibration Shunt

©
A high quality resistor should be used for the Shunt resistor and can be of form factors and construction: SMD 1206; 0805; 0603 or wired components
A shunt calibration is automatically initiated when power is supplied to the system - The shunt is invoked for approximately 3 seconds and can be viewed on the Control Unit display and can be measured at the analog and frequency BNC connectors.
The shunt cal function can be triggered manually by pushing down on the cal switch located on the front panel of the Control Unit for a second. The display and output will show a zero value for approximately eigth seconds then for another three seconds the shunt value will be output and displayed. After which the system returns to normal operation. If the D-RE is used, both channels react of the same kind.

Type Single / Type Double

Installation of Transfer Winding

Note: all materials are $1 \mathrm{~m} / 3 \mathrm{ft}$ in length and are part of Installation Kit SD-IK1
The prepared area of the shaft should be wider than the width of the stator head being used. egg.:

SD-SH1 about $75 \mathrm{~mm} / 2.95 "$
SD-SH4 about $30 \mathrm{~mm} / 1.18$ "

A Wrap a layer of insulating tape around the shaft a little wider than the width of the mu metal being used..

B Apply a layer of self-adhesive mu-metal. The ends must not touch.

C Completely cover this layer with insulating tape.
D Apply another layer of mu-metal.

!
Attention: Gap of 2... 6 mm !
The gap should offset by $90^{\circ} \ldots 180^{\circ}$ from the first layer.
E Apply over the last layer of mu metal an insulating layer of Kapton tape.
This tape is very temperature-stable and allows soldering of the Copper band antenna.
Note: A third layer of mu-metal can improve the ratios.
F Now apply the Copper band around the shaft dividing the mu metal surface in half.
This Copper band has a self adhesive backing.

! Attention: Gap of $1 \ldots 3 \mathrm{~mm}$!

G Now the wires are soldered to both ends of the Copper band.
H The last step is to cover the entire installation with a layer of protective tape.

Type Single / Type Double

Type Single / Type Double

Installation Kit SD-IK1
$1 \mathrm{~m} / 3.3 \mathrm{ft}$ Copper band, $0.3 \mathrm{~mm} \times 10$

mm; self-adhesive
$1 \mathrm{~m} / 3.3 \mathrm{ft}$ mu metal, $0.1 \mathrm{~mm} \times 155 \mathrm{~mm}$; self-adhesive

1 roll of insulation tape, up to $130^{\circ} \mathrm{C}$
1 roll Kapton tape, up to $260^{\circ} \mathrm{C}$
1 pack 2 components epoxy
$0.3 \mathrm{~m} / 1 \mathrm{ft}$ wire AWG22 / $0.34 \mathrm{~mm}^{2}$
$1 \mathrm{~m} / 3.3 \mathrm{ft}$ wire AWG26 / $0.14 \mathrm{~mm}^{2}$

©
The individual components of the set may differ. The Mu metal is possibly also in 2 pieces with half the width in the set.

The mu metal can be cut to length using everyday household scissors.
A small amount of 2 component epoxy is typically enough to bond the rotor to the shaft. Note: it is recommended a layer of nylon reinforced tape be used to strap the rotor electronics
 in place in addition to the 2 component epoxy.

Depending on the application, the necessary coverage can be very different.It is the responsibility of the user to ensure the rotor electronics is properly installed on the shaft.

Enough 2 component epoxy should be used to create a saddle to hold the rotor electronics onto the shaft.

Type Single

Installation of 2 Single Systems on 1 Shaft

Interconnection of two Rotor Electronics S-RE with different frequencies (10.7 MHz and 19.5 MHz) on one shaft.

All combinations of types S-RE1, S-RE2, S-RE3 are possible.

Type Single

Connection cable Cab-2S

Cab-2S is used with the heads: SD-SH1 / SD-SH2 / SD-SH4 / SD-SH5 / SH3

Cable connector

Type Binder series 680, 6pin
680-09-0321-00-06
Pinout
Pin1 RF wire
Pin2 RF sheeld
Pin3 to Pin6 n.c.

Cable connector

Type Binder series 680, 6socket 680-09-0322-00-06

Pinout

Pin1 RF wire
Pin2 RF shield
Pin3 Power1
Pin4 Power2
Pin5 n.c.
Pin6 n.c.

Cable connector

Type Binder series 680, 6pin
680-09-0321-00-06

Pinout

Pin1 RF wire
Pin2 RF shield
Pin3 Power1
Pin4 Power2
Pin5 Jumpered to turn
Pin6 power oscillator on

(d)
The cable is resistant to most oils, lubricants, water, and acids.
The bending radius of the cable should not be less than $25 \mathrm{~mm} / 1^{\prime \prime}$.
Operating temperature range:- $40^{\circ} \mathrm{F}$ to $248^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$

Caution!

Voltage up to $400 \mathrm{~V}_{\mathrm{pp}}$, 22.5 kHz is on the cable. Only use the approved original cable. Damaged or frayed cables must be discarded and replaced immediately.

Type Single / Type Double

EC - Certificate of Conformity

The company
Rainer Thomas Messtechnik GmbH
Wiesseer Str. 1
D-83703 Gmund / Germany
herewith explains, that the telemetry devices Type Single / Double in from it implementation brought in the traffic fulfils the regulations of the following appropriate harmonisation regulations of the community:

EMV-Richtlinie 2014/30/EU
DIN EN 61326-1; VDE 0843-20-1:2013-07 Elektrische Mess-, Steuer-, Regel- und Laborgeräte -EMV-Anforderungen - Teil 1:Allgemeine Anforderungen (IEC 61326-1:2012);
Deutsche Fassung EN 61326-1:2013
The protective aims of the low-voltage directive 2014 / 35 / EU are kept.
Commissioned person for the arrangement of the technical documents:
Rainer Thomas, company RTM GmbH, Wiesseer Str.1, D-83703 Gmund

Commissioned testing centre / accredited lab:
Schwille-Elektronik GmbH, Benzstr.1A, D-85551 Kirchheim, M.Schiedrich

The following basic norms were applied:

- IEC 61000-4-2
- IEC 61000-4-3
- IEC 61000-4-4
- IEC 61000-4-5
- IEC 61000-4-6
- IEC 61000-4-8
- CISPR 55011

Type Single / Type Double

Additions to the Single / Double system

Contentspage
Rotor Electronics S-RE1-cyl A1
CAN-Configuration Tool
RTMCanSettings A3
CAN-Test Tool
RTMCANView A4
Rotor Electronics Configuration SingleCalc A5
Rotor Electronics
S-RE1S-SubD A7

Type Single / Type Double

Rotor electronics S-RE1-cyl
Rotary Electronics in cylindrical housing

Type Single / Type Double

Rotor electronics S-RE1-cyl Overview

Rotor electronics S-RE1-cyl wiring sensor

The calculation and installation of the Gain resistor and the Shunt occurs before imbedding in the cylindrical housing.

In practice, it usually works like this:
Using the mechanical data the value of the sensitivity is calculated.
A value is installed which is more insensible, about 10% to 12%.
e.g. calculated: $0.536 \mathrm{mV} / \mathrm{V}==>$ installed: $0.6 \mathrm{mV} / \mathrm{V}$

Therefore the value can be adjusted with the potentiometer of the control unit during calibration of the shaft.

Type Single / Type Double

CAN Configuration Tool RTMCanSettings

RTMCanSettings.jar is an executable Java application.
This program makes it very easy to configure the ID-settings of the rotary switches of the CAN interface integrated in the Single or Double systems.

Together with the physical values for the full scale control of the measuring range, a dbc file is created in Intel format.

The factory default setting of the
CAN identifier area.
Default value is 200 hexadecimal or 512 decimal.
The range of IDs selectable with the rotary switches is:

200h ... 2FFh Or
512d... 767d.

Type Single / Type Double

CAN Test Tool
 RTMCANView

The program RTMCANView is a LabWindows application and has to be installed.
It serves to quickly check the CAN bus settings and allows a system quick test.
The function requires a CAN interface.
Manufacturer: Vector or Kvaser.

A RTM CAN Viewer

RTM CAN Viewer

Plot Channel
Channel 1

Type Single / Type Double

Rotor Electronics Configuration SingleCalc

With this tool, the dimensioning of the solder resistors for the determination of the gain (GA) and the detuning (CAL) of the Single measuring amplifier or Double measuring amplifier is easily possible.

The stored mathematical formulas correspond to those named in this documentation.
The input sensitivity (1) of the connected strain gauges or the input voltage (2) must be entered. Furthermore, the resistance of the bridge (3) used should be specified.
The amount of bridge detuning when switching on the shunt (CAL) must be entered, in\% of the measuring range. (4)

The program calculates the soldering resistors to be installed. (5)

Configuration

Telemetry

Depending on the installed language on the PC is switched between German and English.

Type Single / Type Double

Rotor Electronics Configuration SingleCalc

Before the telemetry can be used and the dimensioning of the electronics can take place, the mechanical system must be known.
This can be done by measurement or calculation.
The second part of the program SingleCalc should support as a tool in the torque calculation. This is not a computer program for mechanical engineering and sensor construction.

In order to finally determine the material expansion and thus the sensitivity, information on the material, the dimensions and the applied load is necessary.
In addition, the k-factor of the used strain gage bridge application is necessary for the sensitivity calculation.

The calculated value is automatically transferred to the calculation program for the dimensioning of the telemetry resistors and charged there.
Calculation
Mechanical system
of torque application

A RTM Single Calc	\square		x
Datei Hilfe			
(0) Metrisch	perial		
Materialkonstanten			
X5CrNiCuNb 16-4 (1.4542)			
E-Modul [MPa]	196000		
Poissonzahl	0,291		
Welle			
Drehmoment [Nm]	1000		
Wellenaussendurchmesser [mm]	50		
V Hohlwelle Innendurchmeser [mm]	40		
DMS			
k-Faktor	2		
	BERECHN		
Berechnete Werte			
Dehnung [$\mu \mathrm{m} / \mathrm{m}$]	454,6		
Ausgangsspannung [mV N]	0,909		

Depending on the installed language on the PC is switched between German and English.

©
rtmhelper.apk is an Android application with the same functionality as SingleCalc.
It can be installed on any Android tablet or phone from version Android 2.2.

Type Single

Rotor electronics S-RE1S version SubD connector A7

Rotorelectronics for Strain gage Full or Halfbridge, $\geq 350 \Omega$ / with OffsetAdjustment

Full bridge

Calculation of the resistors to be soldered

Gain Resistor

Calibration Resistor

$$
G A=\frac{100}{\frac{125}{3 \times S}-1}[k \Omega]
$$

$$
C A L=R b \times\left(\frac{25000}{D \times S}-0,5\right)[k \Omega]
$$

Units $S=$ Sensitivity [mV/V]; Rb = Bridge resistor [$k \Omega$]; $D=\operatorname{detuning~[~\% ~]~}$

Sensitivity [mV/V]	0.1	0.5	1.0	2.0	4.0	8.0
GA [k]	0.241	1.215	2.459	5.042	10.619	23.762
CAL $\quad[k \Omega$] 80% detuning / 350Ω bridge	1,093.575	218.575	109.200	54.512	27.169	13.497

Type Single

Rotor electronics S-RE1S version SubD connector A8

Rotorelectronics for Strain gage Full or Halfbridge, $\geq 350 \Omega$

Pinout SubD Connector			
Pin number	Name	Pin Num- ber	Name
1	Power AC	9	Power AC
2	RF out	10	RF Ground
3	Resistor CAL	11	Resistor CAL
4	Resistor GA	12	Range 0,5mV/V
5	Resistor GA or fix Range	13	Range 2mV/V
6	Half bridge HB	14	Positive supply EXC+
7	Negative Input IN-	15	Negative supply EXC-
8	Positive Input IN+		

